Ejection Elasticity Index (EEI) = 0.425
EEI is an indicator for left ventricle ejection power and elasticity of large arteries.

Dicrotic Dilation Index (DDI) = 0.46
DDI indicates the contractility, tension and stiffness in the small arteries.

Dicrotic Elasticity Index (DEI) = 0.568
DEI represents the reflection of arterial elasticity and blood flow in the various system.

Augmentation Index (AI) = 0.03
Augmentation Index (AI) is a useful marker for cardiac risk. AI increases with age and a sedentary lifestyle.

Reflection Index (RI) = 0.68
RI is an indicator of the vascular tone of the small arteries. Both vasodilation and vasoconstriction play important roles in determining vascular tone.

Stiffness Index (SI) = 10.41 m/s
SI is a measure of large artery stiffness determined by time. SI calculation gives a value similar to aortic pulse wave velocity.

Heart Rate = 80 (bpm)
C1 - Capacitive Arterial Compliance = 34.27 ml/mmHg
C2 - Oscillatory or Reflective Arterial Compliance = 32.2 ml/mmHg
Diastolic/Systolic Pressure Time Index (DPTI/SPTI) = 0.36

Comments:

All results and analysis should be considered in the context of patient’s case history, symptoms, diagnosis, current medications, treatment plans and therapies.
Final diagnosis is the sole responsibility of the licensed medical practitioner after patient’s examination, lab tests and/or other clinical findings as necessary.
Heart Rate = 80 (bpm)
Pulse Height (PH) = 79

- a-b: 115 ms
- a-c: 140 ms
- a-d: 190 ms
- a-e: 295 ms
- b/a: -0.02
- c/a: -0.12
- d/a: -0.27
- e/a: 0

Thank you for taking the Pulse Wave Velocity (PWV) Analysis. This report gives you a quick and objective
answer to how your vascular system is currently doing. This aim of these results are not to state a medical
diagnosis, but to support a diagnosis by a medical professional. The result should therefore be interpreted
accordingly.

PWV is an excellent analysis to evaluate vascular endothelial dysfunction. This represents the elasticity
of the artery. Arteries that are atherosclerotic, arteriosclerotic, or hardened (having reduced elasticity and
increased narrowing) place an extra strain on the heart, valves, and arteries which can lead to stroke, heart
attack, kidney failure and/or sudden death.

The pulse wave is a physiological phenomenon, observable and measurable in the arterial system during
blood circulation. During one heart systole a certain blood volume is expelled. This propagates through the
arteries due to the reciprocal transformation between kinetic energy of a segment of the expelled blood
volume and the potential energy of a stretched segment of the resilient vascular wall. We can observe the
changes in pressure, blood flow, velocity and profile throughout the whole pulse wave. It can be used for
classification of the artery elasticity.

How is Pulse Wave Velocity measured by a finger probe?
The heart contracts and creates a direct wave which travels down the arm (red curve). The direct wave is
reflected in the lower body, and travels back towards the arm (pink curve). The direct wave and the reflected
wave combine to form the finger probe (blue curve).

- Stroke Volumes (SV): 70.23 ml (55-160)
- Stroke Volume Index (SVI): 30.62 ml/m2
- Cardiac Output (Q): 5.62 l/min (4.0-6.0)
- Cardiac Index (CI): 2.45 l/min/m2 (2.6-4.2)
- Systemic Vascular Resistance (SVR): 1335 (700-1800)
- Mean Arterial Pressure (MAP): 94.77 mmHg (70-119)
- Pulse Pressure (PP): 36.12 mmHg (25-100)
- Estimated PPG Ejection Fraction (EF): 64.26 % (55-70)
- Blood Volume (BV): 6.06 l (3-5)
- Estimated PPG Cardiac Ejection Time (ET): 335 ms (260-380)

Comments:

Physician’s Signature...

All results and analysis should be considered in the context of patient/candidate’s case history, symptoms, diagnosis, current medications, treatment plans and therapies.
Final diagnosis is the sole responsibility of the licensed medical practitioner after persona examination, lab tests and/or other clinical findings as necessary.
Ejection Elasticity Index (EEI) = 0.425

EEI is an indicator for left ventricle ejection power and elasticity of large arteries.

Normal Blood Circulation

Dicrotic Dilation Index (DDI) = 0.46

DDI indicates the contractility, tension and stiffness in the small arteries.

Normal Blood Circulation

Dicrotic Elasticity Index (DEI) = 0.568

DEI represents the reflection of arterial elasticity and blood flow in the venous system.

Normal Blood Circulation

Augmentation Index (AI) = 0.03

Augmentation Index (AI) is a useful marker for cardiac risk. AI increases with age and a sedentary lifestyle.

AI is a measure of arterial stiffness and it provides general information about the arteries. AI is positively correlated with pulsewave velocity (PWV) and blood pressure (BP).

Reflection Index (RI) = 0.68

RI is an indicator of the vascular tone of the small arteries. Both vasodilation and vasoconstriction play important roles in determining vascular tone.

Stiffness index (SI) = 10.41 m/s

SI is a measure of large artery stiffness determined by time. SI calculation gives a value similar to aortic pulse wave velocity.

APG Pattern

An indication of the biological (rather than chronological) age of arteries

APG Type = C

Heart Rate = 80 (bpm)

C1 - Capacitive Arterial Compliance = 34.27 ml/mmHg

C2 - Oscillatory or Reflective Arterial Compliance = 32.2 ml/mmHg

Diastolic/Systolic Pressure Time Index (DPTI/SPTI) = 0.36
Heart Beets = 326
Artifacts = 0
QT = 304 ms QTc = 424 ms Vx = 0.35
QRS = 94 ms
Ventricular Extrasystole = 0
Supra-Ventricular(Atrial) Extrasystole = 0
Second degree AV block = 0
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeartRate</td>
<td>51</td>
</tr>
<tr>
<td>Amplitude</td>
<td>1</td>
</tr>
<tr>
<td>QRS Duration</td>
<td>3</td>
</tr>
<tr>
<td>QRS Axis</td>
<td>2</td>
</tr>
<tr>
<td>ST Intervals</td>
<td>2</td>
</tr>
<tr>
<td>QT Intervals</td>
<td>1</td>
</tr>
<tr>
<td>PR Intervals</td>
<td>1</td>
</tr>
<tr>
<td>RR Intervals</td>
<td>1</td>
</tr>
<tr>
<td>RR Interval</td>
<td>1</td>
</tr>
<tr>
<td>QTc Interval</td>
<td>1</td>
</tr>
<tr>
<td>ST Deviation</td>
<td>1</td>
</tr>
<tr>
<td>QT Deviation</td>
<td>1</td>
</tr>
<tr>
<td>RR Deviation</td>
<td>1</td>
</tr>
<tr>
<td>QTc Deviation</td>
<td>1</td>
</tr>
<tr>
<td>ST Interval</td>
<td>1</td>
</tr>
<tr>
<td>QT Interval</td>
<td>1</td>
</tr>
<tr>
<td>RR Interval</td>
<td>1</td>
</tr>
<tr>
<td>QTc Interval</td>
<td>1</td>
</tr>
<tr>
<td>ST Deviation</td>
<td>1</td>
</tr>
<tr>
<td>QT Deviation</td>
<td>1</td>
</tr>
<tr>
<td>RR Deviation</td>
<td>1</td>
</tr>
<tr>
<td>QTc Deviation</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments:

Physician's Signature...
Autonomic Balance Analysis

Gender: M Date: 17 Feb 2012 09:19 Weight: 107kg Height: 177cm

Signal Quality = Resting: Good Deep Breathing: Good Valsalva: Good Standing: Good

<table>
<thead>
<tr>
<th></th>
<th>Duration</th>
<th>HR</th>
<th>BP</th>
<th>DMF</th>
<th>LF</th>
<th>HF</th>
<th>LF/HF</th>
<th>TSP</th>
<th>SDNN</th>
<th>rmsSD</th>
<th>pVH50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>239</td>
<td>81</td>
<td>146/81</td>
<td>0.31</td>
<td>0.86 N</td>
<td>0.74 N</td>
<td>1.17 N</td>
<td>1.42</td>
<td>463.37</td>
<td>24.9</td>
<td>10.8</td>
</tr>
<tr>
<td>Deep Breathing</td>
<td>59</td>
<td>77</td>
<td>110/86</td>
<td>0.11</td>
<td>3.92</td>
<td>6.05 N</td>
<td>0.65</td>
<td>1.66</td>
<td>2394.78</td>
<td>51.9</td>
<td>26.38</td>
</tr>
<tr>
<td>Valsalva</td>
<td>89</td>
<td>77</td>
<td>124/82</td>
<td>0.1</td>
<td>8.91 N</td>
<td>3.17</td>
<td>2.84</td>
<td>2.50</td>
<td>3505.87</td>
<td>86.33</td>
<td>27.13</td>
</tr>
<tr>
<td>Standing</td>
<td>119</td>
<td>86</td>
<td>142/183</td>
<td>0.13</td>
<td>1.54 N</td>
<td>1.84 N</td>
<td>1.05</td>
<td>2.41</td>
<td>1104.79</td>
<td>43.55</td>
<td>11.04</td>
</tr>
</tbody>
</table>

Autonomic Tonus = 134.52 N E/I Ratio = 1.25 Valsalva Ratio = 1.33 30.15 Ratio = 1.23

Resting: Normal level of sympathetic and parasympathetic and sympathetic balance.
Deep Breathing: Normal Parasympathetic response to stimulation.
Valsalva: Normal Sympathetic response to stimulation.
Standing: Normal response to stimulation; heart rate upon standing is considered "low". Possible Pre-Clinical Orthostatic Intolerance: General therapies would include fluid and salt intake and lifestyle modifications as necessary. Enhanced cardiovascular tolerance. The autonomic regulation of cardiovascular functions provides enormous ability to tolerate physical exertion and normal adaptation to their long-term effects. Typically this is a sign of an absence of physical exhaustion, overtraining or any cardiovascular health conditions. This is a typical pattern found in a physically active, healthy individual, without any evident signs of physical exhaustion, overtraining or other conditions altering the regulatory functions of the autonomic nervous system or the cardiovascular response to it.

Comments:

Physician’s Signature...

Printed: 17 Feb 2012 09:19

All results and analysis should be considered in the context of the patient’s case history, symptoms, diagnosis, current medications, treatment plans, and therapies. Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Autonomic Balance - Resting

Gender: M Date: 17 Feb 2012 09:19 Weight: 107 kg Height: 177 cm

Total Heart Beats = 325 Artifacts = 1 (0.3%) Signal Quality = Good

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>normal</th>
<th>borderline</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFa</td>
<td>0.65</td>
<td>0.5-4</td>
<td>0.3-0.5</td>
<td>>7</td>
<td><0.3</td>
</tr>
<tr>
<td>RFa</td>
<td>0.74</td>
<td>0.5-4</td>
<td>0.3-0.5</td>
<td>>7</td>
<td><0.3</td>
</tr>
<tr>
<td>LFa/RFa</td>
<td>1.17</td>
<td>0.4 to 3</td>
<td>>3</td>
<td><4</td>
<td><0.4</td>
</tr>
</tbody>
</table>

HR (bpm) | 81
VLF | 69.86
SDNN | 24.9
TSP | 463

HR (bpm) - DMF - Hz, VLF, LF, HF, TSP - ms^-2; LFa, RFa - bpm^-2

Normal level of sympathetic and parasympathetic and sympathetic balance;

Comments:

Physician’s Signature...

All results and analysis should be considered in the context of the patient/candidate’s case history, symptoms, diagnosis, current medications, treatment plans and therapies.

Final diagnosis is the sole responsibility of the licensed medical practitioner after persons examination, lab tests and/or other clinical findings as necessary.
Non-Invasive Autonomic Nervous System Monitoring

Your nervous system is comprised of three parts:
1) Somatic (or sensory) nervous system
2) Motoric Nervous System
3) Autonomic Nervous System (ANS)

Your ANS is that part of your nervous system which functions to sustain your life by helping to control your heart, lungs, digestive system, blood pressure, immune system, certain reflexes, such as coughing and gagging, fluid balance, pupil diameter, sweating and sexual function.

Your ANS Consists of Two Parts (branches). There are two parts, or branches to your ANS
1) Sympathetic branch
2) Parasympathetic branch

Generally, the sympathetic branch is more in control when you are stressed, nervous, or excited, while the parasympathetic branch is more in control when you are relaxing, sleeping, or recovering from an illness or injury.

A balance between the two branches of your ANS is essential for good health. In fact, most illnesses and injuries cause or result from an imbalance between these two branches. An imbalance in your ANS can tell your doctor many things about how healthy you are as well as what can be done to keep you as healthy as possible.

ANS monitoring records your heart rate variability and respiratory activity. Your heart rate variability and respiratory activity are analyzed by a computer to determine how your ANS is controlling your heart and your lungs and other parts of your body. Your physician then interprets your results produced by the computer.

What is Heart Rate Variability (HRV)?
Heart rate variability (HRV) is a measure of your heart's ability to quickly respond to changes in your level of activity. Moderate variability is healthy. Too much or too little is unhealthy. ANS monitoring using HRV can provide your doctor with information that cannot be seen using other measures, for example on an EKG recording.

Why is including respiratory activity important?
Analyzing your respiratory activity along with your HRV is key to monitoring the balance between the two branches of your autonomic nervous system.

Why is ANS monitoring important?
Everyone is different, and so is their autonomic nervous system. How an individual responds to disease, injury, medicines and medical treatments largely depends on her or his ANS. By monitoring your ANS, your doctor can determine whether she or he is doing enough to keep you healthy. In this way, your doctor can better care for you and better maintain your well-being.

Who should be monitored?
Everyone from children to older adults can and should have their ANS monitored. Frequent monitoring, when indicated, helps your doctor better maintain your health and well-being and tailor treatments, including medications, especially for you.

Comments:

Physician's Signature...
Autonomic Balance Analysis

Gender: M **Date:** 17 Feb 2012 09:19 **Weight:** 107kg **Height:** 177cm

![Graph of Autonomic Balance Analysis](image)

Signal Quality = Resting: Good Deep Breathing: Good Valsalva: Good Standing: Good

Autonomic Tonus = 134.52 N E/I Ratio = 1.25 Valsalva Ratio = 1.33 30:15 Ratio = 1.23

RESTING: Normal level of sympathetic and parasympathetic and sympathovagal balance;

DEEP BREATHING: Normal Parasympathetic response to stimulation;

VALSALVA: Normal Sympathetic response to stimulation;

STANDING: Normal response to stimulation; Heart rate upon standing is considered ‘low’; Possible Pre-Clinical Orthostatic Intolerance; General therapies would include fluid and salt intake and life style modifications as necessary; Enhanced cardiovascular tolerance. The autonomic regulation of cardiovascular functions provides enormous ability to tolerate physical exertions and normal adaptation to their long-term effects. Typically this is a sign of an absence of physical exhaustion, overtraining or any cardiovascular health conditions. This is a typical pattern found in a physically active, healthy individual, without any evident signs of physical exhaustion, overtraining or other conditions altering the regulatory functions of the autonomic nervous system or the cardiovascular response to it;

Comments:

Physician’s Signature...

All results and analyses should be considered in the context of person/candidate’s case history, symptoms, diagnosis, current medications, treatment plans and therapies.

Final diagnosis is the sole responsibility of the licensed medical practitioner after persons examination, lab tests and/or other clinical findings as necessary.
Autonomic Balance Analysis

Gender: M Date: 17 Feb 2012 09:19 Weight: 107 kg Height: 177 cm

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valsalva Ratio</td>
<td>1.33</td>
<td>1.2 to 1.6</td>
</tr>
<tr>
<td>E/I Ratio</td>
<td>1.25</td>
<td>1.1 to 1.6</td>
</tr>
<tr>
<td>Standing xHR</td>
<td>3</td>
<td><1 to 12</td>
</tr>
<tr>
<td>SB/LS Ratio</td>
<td>1.23</td>
<td>1.1 to 1.6</td>
</tr>
<tr>
<td>Standing xBP</td>
<td>6</td>
<td><1 to 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting LFa/RFa</td>
<td>1.17</td>
<td>0.4 - 3</td>
</tr>
<tr>
<td>Valsalva xLFa</td>
<td>10.32</td>
<td>>3 - 10</td>
</tr>
<tr>
<td>Deep breathing xLFa</td>
<td>8.19</td>
<td>>3 - 10</td>
</tr>
<tr>
<td>Standing LFa/RFa</td>
<td>1.05</td>
<td>0.4 - 6</td>
</tr>
<tr>
<td>Autonomic Tone</td>
<td>134.52</td>
<td>120 - 170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Resting</th>
<th>Standing 1</th>
<th>Standing 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>81</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td>LF/A</td>
<td>14.33</td>
<td>15.46</td>
<td>15.94</td>
</tr>
<tr>
<td>HPN</td>
<td>59.1</td>
<td>6.4</td>
<td>8.27</td>
</tr>
<tr>
<td>SDNN</td>
<td>24.9</td>
<td>44.99</td>
<td>17.67</td>
</tr>
<tr>
<td>BP</td>
<td>136</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td>LF/HF</td>
<td>1.42</td>
<td>2.69</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Comments:

Physician's Signature...

All results and analysis should be considered in the context of patient/candidate's case history, symptoms, diagnosis, current medications, treatment plans and therapies.

Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Autonomic Balance - Valsalva

Gender: M Date: 17 Feb 2012 09:19 Weight: 107 kg Height: 177 cm

Heart Rate & ECG

Spectrum

Total Heart Beats = 115 Artifacts = 1 (0.9%) Signal Quality = Good

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>normal</th>
<th>bl low</th>
<th>bl high</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFa</td>
<td>x10.32</td>
<td>x3-10</td>
<td>x0-3</td>
<td>x10-11</td>
<td>>x11</td>
<td><x3</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.33</td>
<td>>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>124/92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HR 77 PH 71 DMF 0.1
VLF 496.57 LF 683.72 HF 229.6
SDNN 81.33 rmsSD 27.13 pNN50 6
TSP 3505 LF/HF 2.98

HR, PD - bpm; DMF - Hz; VLF, LF, HF, TSP - ms^2; R:Fa, LFa - bpm^2

Normal Sympathetic response to stimulation;

Comments:

Physician's Signature...

All results and analysis should be considered in the context of patient/candidate's case history, symptoms, diagnosis, current medications, treatment plans and therapies.
Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Autonomic Balance Analysis - Sympathetic

Gender: M **Date:** 17 Feb 2012 09:19 **Weight:** 107kg **Height:** 177cm

Signal Quality = Resting: Good Valsalva: Good

RESTING

<table>
<thead>
<tr>
<th>Value</th>
<th>Normal</th>
<th>Borderline</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFa</td>
<td>0.86</td>
<td>0.5-1</td>
<td>>3</td>
<td><0.5</td>
</tr>
<tr>
<td>LFn</td>
<td>0.74</td>
<td>0.5-1</td>
<td>>3</td>
<td><0.5</td>
</tr>
<tr>
<td>LFa/LFn</td>
<td>1.17</td>
<td>0.4-3</td>
<td>>3</td>
<td><0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Normal</th>
<th>Bl Low</th>
<th>Bl High</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRR</td>
<td>81</td>
<td>70-90</td>
<td>>90</td>
<td><70</td>
<td><3</td>
</tr>
<tr>
<td>VLF</td>
<td>69.86</td>
<td>66.30</td>
<td>HF</td>
<td>11.50</td>
<td>0</td>
</tr>
<tr>
<td>SDNN</td>
<td>24.9</td>
<td>16.8</td>
<td>1.42</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>TSP</td>
<td>460</td>
<td>HF/HF</td>
<td>1.42</td>
<td>1.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

VALSALVA

<table>
<thead>
<tr>
<th>Value</th>
<th>Normal</th>
<th>Bl Low</th>
<th>Bl High</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFa</td>
<td>x10.32</td>
<td>x3-10</td>
<td>x30-10</td>
<td>x110</td>
<td><3</td>
</tr>
<tr>
<td>Ratio</td>
<td>1.33</td>
<td>1.2</td>
<td>1.11</td>
<td>>3 <1.2</td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>124/52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autonomic Tonus = 134.52 N Valsalva Ratio = 1.33

- **Resting:** Normal level of sympathetic and parasympathetic and sympathovagal balance.
- **Valsalva:** Normal Sympathetic response to stimulation.

Comments:

Physician's Signature:

Printed by: [Name] [Date: 2022-01-01]

All results and analysis should be considered in the context of the patient's case history, symptoms, diagnosis, current medications, treatment plans and therapies. Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Autonomic Balance - Deep Breathing

Gender: M Date: 17 Feb 2012 09:19 Weight: 107 kg Height: 177 cm

Heart Rate & ECG

Spectrum

Total HeartBeats = 77 Artifacts = 0 (0%) Signal Quality = Good

<table>
<thead>
<tr>
<th>Value</th>
<th>Normal</th>
<th>bl low</th>
<th>bl high</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA</td>
<td>x8.19</td>
<td>x0-10</td>
<td>x0-3</td>
<td>x10-11</td>
<td>>x11</td>
</tr>
<tr>
<td>E/I Ratio</td>
<td>1.25</td>
<td>>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>119/80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HR 77 PH 3.3 DMF 0.11
VLF 137.74 LF 415.36 HF 251.61
SDNN 51.9 rmsSD 24.38 pNN50 3
TSP 2254 LF/HF 1.66

HR, PD - bpm; DMF - Hz; VLF, LF, HF, TSP - mmHg2; RFA, LF, HF - bpm2

Normal Parasympathetic response to stimulation.

Comments:

Physician's Signature...

All results and analysis should be considered in the context of patient's case history, symptoms, diagnosis, current medications, treatment plans and therapies.
Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Gender: M Date: 17 Feb 2012 09:19 Weight: 107kg Height: 177cm

Signal Quality = Resting: Good Deep Breathing: Good

RESTING

<table>
<thead>
<tr>
<th>Value</th>
<th>Normal</th>
<th>Borderline</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFa</td>
<td>0.86</td>
<td>0.5-4</td>
<td>0.3-0.5</td>
<td>>7</td>
</tr>
<tr>
<td>RFa</td>
<td>0.74</td>
<td>0.5-4</td>
<td>0.3-0.5</td>
<td>>7</td>
</tr>
<tr>
<td>LFa/LFa</td>
<td>1.17</td>
<td>>0.4 to 3</td>
<td>>3</td>
<td><0.4</td>
</tr>
<tr>
<td>HR</td>
<td>81</td>
<td>140-01</td>
<td>DMR</td>
<td>0.31</td>
</tr>
<tr>
<td>VLF</td>
<td>69.06</td>
<td>LF</td>
<td>HF</td>
<td>46.0</td>
</tr>
<tr>
<td>SDNN</td>
<td>24.9</td>
<td>rmsSD</td>
<td>10.8</td>
<td>pNN50</td>
</tr>
<tr>
<td>TSP</td>
<td>463</td>
<td>LF/HF</td>
<td>1.42</td>
<td></td>
</tr>
</tbody>
</table>

DEEP BREATHING

<table>
<thead>
<tr>
<th>Value</th>
<th>Normal</th>
<th>Bl low</th>
<th>Bl high</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFa</td>
<td>x8.19</td>
<td>x3-10</td>
<td>x0.3</td>
<td>x10-11</td>
<td>>x11</td>
</tr>
<tr>
<td>E/I Ratio</td>
<td>1.25</td>
<td>>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>119/86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autonomic Tonus = 134.52 N E/I Ratio = 1.25

Resting: Normal level of sympathetic and parasympathetic and sympathovagal balance.

Deep Breathing: Normal Parasympathetic response to stimulation.

Comments:

Physician’s Signature...
Autonomic Balance - Standing

Gender: M Date: 17 Feb 2012 09:19 Weight: 107 kg Height: 177 cm

Heart Rate & BVP

[Heart rate graph]

Cardiovascular Function

[Cardiovascular function chart]

Spectrum

[Frequency spectrum graph]

Total Heart Beats = 173 Artifacts = 1 (0.8%) Signal Quality = Good

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/L</td>
<td>0.74:1.84</td>
</tr>
<tr>
<td>L/F</td>
<td>0.88:1.94</td>
</tr>
<tr>
<td>LTA/LFA</td>
<td>1.27:1.03</td>
</tr>
<tr>
<td>HR</td>
<td>81:86</td>
</tr>
<tr>
<td>30:15 Ratio</td>
<td>1.23</td>
</tr>
<tr>
<td>TSP</td>
<td>11.06</td>
</tr>
<tr>
<td>SDNN</td>
<td>52.55</td>
</tr>
<tr>
<td>SDSD</td>
<td>11.03</td>
</tr>
</tbody>
</table>

Normal response to stimulation; heart rate upon standing is considered 'low'. Possible Pre-Clinical Orthostatic Intolerance: General therapies would include fluid and salt intake and lifestyle modifications as necessary. Enhanced cardiovascular tolerance: The autonomic regulation of cardiovascular functions provides enormous ability to tolerate physical exertions and normal adaptation to their long-term effects. Typically this is a sign of an absence of physical exhaustion, overtraining or any cardiovascular health conditions. This is a typical pattern found in a physically active, healthy individual, without any evident signs of physical exhaustion, overtraining or other conditions altering the regulatory functions of the autonomic nervous system or the cardiovascular response to it.

Comments:

Physician's Signature...

Printed: [Date] [Sign]
Total HeartBeats = 325 Artifacts = 1 (0.3%) Signal Quality = Good
HeartRate = 81 (bpm) TOI = 21.12 FDI = 463.37 SDFN = 24.9
FUNCTIONAL AGE (in years) = 54 HEALTH RISK Factor Based on Stress Assessment = 68.25 %

Physical Stress Coefficient = 4.615 (Normal value: 1.9 Range from 0 to 4 Unfavorable values: higher than 2.4)
PHYSICAL STRESS INDEX = 2.715
(Normal value: 0 Range from -3 to 3 Unfavorable values: higher than 1)

Mental Stress Coefficient = 1.791 (Normal value: 1.3 Range from 0 to 4 Unfavorable values: higher than 1.8)
MENTAL STRESS INDEX = 0.491
(Normal value: 0 Range from -3 to 3 Unfavorable values: higher than 1)

The score is average. It indicates low mental stress. Stress in the recent past has had little effect on your mental-health. The negative effects of mental stress are limited.

Comments:
HRV Analysis

Gender: M Date: 17 Feb 2012 09:19 Weight: 107kg Height: 177cm

Total HeartBeats = 325 Artifacts = 1 (0.3%) Signal Quality = Good

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeartRate</td>
<td>81</td>
<td>bpm</td>
</tr>
<tr>
<td>AMo</td>
<td>108</td>
<td>number</td>
</tr>
<tr>
<td>Ma</td>
<td>720</td>
<td>bpm</td>
</tr>
<tr>
<td>SDNN</td>
<td>24.9</td>
<td>ms</td>
</tr>
<tr>
<td>SDNN5</td>
<td>23.85</td>
<td>ms</td>
</tr>
<tr>
<td>pNN50</td>
<td>0</td>
<td>%</td>
</tr>
<tr>
<td>rmssDD</td>
<td>10.8</td>
<td>ms</td>
</tr>
<tr>
<td>SDSD</td>
<td>10.8</td>
<td>ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD1</td>
<td>7.64</td>
<td>bpm</td>
</tr>
<tr>
<td>SD2</td>
<td>34.37</td>
<td>number</td>
</tr>
<tr>
<td>SD1/SD2</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Peak (Hz)</th>
<th>Power (ms²)</th>
<th>Power (%)</th>
<th>Power (n.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLF</td>
<td>0.01</td>
<td>69.86</td>
<td>15.98</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>0.09</td>
<td>66.38</td>
<td>14.33</td>
<td>16.87</td>
</tr>
<tr>
<td>HF</td>
<td>0.29</td>
<td>46.8</td>
<td>10.1</td>
<td>11.89</td>
</tr>
<tr>
<td>TP</td>
<td>0.01</td>
<td>46.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF/HF</td>
<td>1.419</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Physician's Signature...

All results and analysis should be considered in the context of person/candidate's case history, symptoms, diagnosis, current medications, treatment plans and therapies.

Final diagnosis is the sole responsibility of the licensed medical practitioner after person's examination, lab tests and/or other clinical findings as necessary.
Gender: M Date: 17 Feb 2012 09:34 Weight: 107 kg Height: 177 cm

Total HeartBeats = 341 Artifacts = 1 (0.3%) Signal Quality = Good

Heart Rate = 85 bpm HR Min = 74 HR Max = 100 Total Power = 798.837

A1 = 131 ms A2 = 1 ms B1 = 3 s B2 = 11 s L1 = 741 ms L2 = 692 ms

Cardiac Coefficient = 7.452 (Normal value: 7.2 Range from 1 to 15 Unfavorable values: lower than 6.2)
CARDIAC PERFORMANCE INDEX = 6.262
(Normal value: 6 Range from 0 to 12 Unfavorable values: lower than 4)

The score is average. The cardio fitness is moderate. It is recommended that you exercise more and adopt a more active and healthy lifestyle.

Vascular Coefficient = 3.65 (Normal value: 5.5 Range from 1 to 15 Unfavorable values: lower than 4.5)
VASCULAR PERFORMANCE INDEX = 4.05
(Normal value: 6 Range from 0 to 12 Unfavorable values: lower than 4)

The score is below average. The elasticity of the blood vessels is insufficient. The vascular system is not able sufficiently to respond to differences in blood pressure.

Cardiovascular Training Coefficient = 6.484 (Normal value: 6.4 Range from 1 to 15 Unfavorable values: lower than 5.4)
CARDIOVASCULAR TRAINING INDEX = 6.1
(Normal value: 6 Range from 0 to 12 Unfavorable values: lower than 4)

The score is average. The fitness is moderate. You probably exercise too little and soon experience fatigue when you do so.

Comments:

Physician’s Signature...

Printed 9 Apr 30 9:30:31

All results and analysis should be considered in the context of patient/candidate’s case history, symptoms, diagnosis, current medications, treatment plans and therapies.

Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Gender: M Date: 17 Feb 2012 09:19 Weight: 107kg Height: 177cm

Signal Quality = Good

FUNCTIONAL AGE (in years) = 54

PHYSICAL STRESS INDEX = 2.715
(Normal value: 0 Range from -3 to 3 Unfavorable values: higher than 1)

MENTAL STRESS INDEX = 0.491
(Normal value: 0 Range from -3 to 3 Unfavorable values: higher than 1)

CARDIAC PERFORMANCE INDEX = 6.262
(Normal value: 6 Range from 0 to 12 Unfavorable values: lower than 4)

VASCULAR PERFORMANCE INDEX = 4.05
(Normal value: 6 Range from 0 to 12 Unfavorable values: lower than 4)

CARDIOVASCULAR TRAINING INDEX = 8.1
(Normal value: 6 Range from 0 to 12 Unfavorable values: lower than 4)

OVERALL HEALTH RISK FACTOR = 66.475 %
(Normal value: 50 Range from 0 to 100 Unfavorable values: higher than 65)

Comments:

Physician's Signature...

Printed: 8 April 2012 01:31

All results and analysis should be considered in the context of person/candidate's case history, symptoms, diagnosis, current medications, treatment plans and therapies.

Final diagnosis is the sole responsibility of the licensed medical practitioner after personal examination, lab tests and/or other clinical findings as necessary.
Gender: M Date: 17 Feb 2012 09:19 Weight: 107 kg Height: 177 cm

Ideal Body Weight = 76 kg
Real Body Weight = 107 kg
Basal Metabolic Rate (BMR) = 2122 cal
Total Daily Energy Expenditure = 3183 cal

Body Mass Index (BMI) = 34.2
(Normal value range: 19 - 25)

Body mass index, or BMI, is a new term to many people. However, it is the measurement of choice for many physicians and researchers and it is used to estimate a healthy body weight based on a person's height, assuming an average body composition.

It is the most widely used diagnostic tool to identify weight problems within a population. Body mass index is defined as the individual's body weight divided by the square of his or her height.

The body mass index can be used to identify if you are overweight. A drawback of the calculation is that if you are muscular it can suggest you are overweight due to muscle density.

An elevated BMI is associated with Metabolic Syndrome and is tied to an elevated risk of type 2 diabetes, hypertension, and cardiovascular disease.

Risk of Associated Disease According to BMI and Waist Size

18.5 or less: Underweight - N/A
19 - 25: Normal - very low risk of associated diseases
26 - 29: Overweight - prone to health risks
30 - 40: Obese - high risk of associated diseases
40 or greater: Extremely Obese - very high risk of associated diseases

The Basal Metabolic Rate (BMR) shows the calories (energy) your body uses per day while at rest. The Total Daily Energy Expenditure shows the calories needed to maintain your current weight.

For healthy weight management increase your caloric usage (exercises) and decrease your caloric intake below the Total Daily Energy Expenditure towards the Basal Metabolic Rate (BMR).

Eating a high quality, nutrient dense diet (fresh vegetables (cooked and raw), chicken, fish, eggs, and yogurt) and staying away from carbohydrates and poor quality fats helps to prevent cravings and aids in weight loss.

If you go too far below the Basal Metabolic Rate (BMR) your metabolism may slow down making weight management more difficult.

Comments:

Physician's Signature...

Printed: 17 Feb 2012 09:31
All results and analysis should be considered in the context of persons/candidate’s case history, symptoms, diagnosis, current medications, treatment plans and therapies.
Final diagnosis is the sole responsibility of the licensed medical practitioner after physical examination, lab tests and/or other clinical findings as necessary.